GO DEEPEST

【Tips】
dlbook_notation
Formatting Instructions for ICLR2020 Conference Submissions
トップカンファレンスへの論文採択に向けて(AI研究分野版)
AI系トップカンファレンスへの論文採択に向けた試験対策
トップカンファレンスへの論文採択に向けて(NLP研究分野版)
研究における評価実験で重要な7つのこと
松尾ぐみの論文の書き方:英語論文

Papers with code
Hugging Face
Distill
labml.ai Deep Learning Paper Implementations
PyTorch Image Models

How PyTorch Transposed Conv1D Work
Deconvolution and Checkerboard Artifacts
Flow-based Deep Generative Models
learn2learn

安易に逆行列を計算するのはやめよう
有名企業のエンジニア向け研修資料まとめ

【General】
Real-ESRGAN-GUI
TorchOpt

【Transformer関連】
Transformer Language Model Mathematical Definition
より良いtransformerをつくる
Transformerの最前線 ~ 畳込みニューラルネットワークの先へ ~
【メタサーベイ】Transformerから基盤モデルまでの流れ
Transformer メタサーベイ

【Flow-based Model】
Normalizing Flow入門 第1回 変分推論
Normalizing Flow入門 第2回 Planar Flow
Normalizing Flow入門 第3回 Bijective Coupling
Normalizing Flow入門 第4回 Glow
Normalizing Flow入門 第5回 Autoregressive Flow
Normalizing Flow入門 第6回 Residual Flow
Normalizing Flow入門 第7回 Neural ODEとFFJORD

Variational Inference with Normalizing Flows
NICE: Non-linear Independent Components Estimation
Density estimation using Real NVP
Glow: Generative Flow with Invertible 1x1 Convolutions

【Diffusion Model】
Awesome Diffusion Models
Denoising Diffusion Probabilistic Models (DDPM)
Understanding Diffusion Models: A Unified Perspective
Generative Modeling by Estimating Gradients of the Data Distribution
Inject Noise to Remove Noise: A Deep Dive into Score-Based Generative Modeling Techniques

 

【GAN関連】
Large Scale GAN Training for High Fidelity Natural Image Synthesis
A Style-Based Generator Architecture for Generative Adversarial Networks
HoloGAN: Unsupervised Learning of 3D Representations from Natural Images
Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
SinGAN: Learning a Generative Model from a Single Natural Image
Towards a Deeper Understanding of Adversarial Losses under a Discriminative Adversarial Network Setting

●Generative Adversarial Networks
Generative Adversarial Nets
●BiGAN, ALI
Adversarial Feature Learning
Adversarially Learned Inference
Adversarially Learned Inference - GitHub Pages
●VAE-GAN
Autoencoding beyond pixels using a learned similarity metric
●Adversarial Autoencoder
Adversarial Autoencoders
●Wasserstein GAN
Wasserstein GAN
●Gradient Penalty
Improved Training Wasserstein GANs
●Perceptual Loss
Perceptual Loss for Real-Time Style Transfer and Super-Resolution
●Hinge Loss
Hierarchical Implicit Models and Likelihood-Free Variational Inference Tran, Ranganath, Blei, 2017
Geometric GAN Lim & Ye, 2017
Spectral Normalization for Generative Adversarial Networks Miyato, Kataoka, Koyama, Yoshida, 2018
●Feature Matching Loss
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
●Instance Normalization
Instance Normalization: The Missing Ingredient for Fast Stylization
●Spectral Normalization
Spectral Normalization for Generative Adversarial Networks
●Adaptive Instance Normalization(AdaIN)
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
●Self-Attention
Self-Attention Generative Adversarial Networks
●Projection Discriminator
cGANs with Projection Discriminator
●Inception Score
Improved Techniques for Training GANs
●Frechet-Inception Distance(FID)
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
●Structured Similarity(SSIM)
Image Quality Assessment: From Error Visibility to Structural Similarity
●Perception-Distortion Tradeoff
The Perception-Distortion Tradeoff
●Cosine Similarity(CSIM)
ArcFace: Additive Angular Margin Loss for Deep Face Recognition

【Meta Learning】
Meta-Learning: Learning to Learn Fast - Lil'Log
Few-shot Learningとは何なのか【Generalizing from a few examples: A survey on few-shot learning】
MetaGAN: An Adversarial Approach to Few-Shot Learning
●MAML
Model-Agnostic Meta-Learning For Fast Adaptation of Deep Neural Networks
●Reptile (FOMAML)
On First-Order Meta-Learning Algorithims
●Implicit MAML
Meta-Learning with Implicit Graidents
Modular Meta-Learning with Shrinkage
●CAVIA
Fast Context Adaptation via Meta-Learning
●TAML
Task-Agnostic Meta-Learning for Few-shot Learning

【The Lottery Ticket Hypothesis】
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
What's Hidden in a Randomly Weighted Neural Network?
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Feature in CNNs

公開日:
最終更新日:2022/09/27